题目内容
如图,在梯形ABCD中,AD∥BC,BA=AD=DC,点E在边CB的延长线上,BE=AD.
(1)求证:△ABE≌△ADC;
(2)点F在边BC上,∠AFB=2∠E,求证:四边形AFCD是菱形.
(1)求证:△ABE≌△ADC;
(2)点F在边BC上,∠AFB=2∠E,求证:四边形AFCD是菱形.
证明:(1)∵AD∥BC,
∴∠D+∠ECD=180°,
∵BA=AD=DC,
∴∠ABC=∠DCE,
∵∠ABE+∠ABC=180°,
∴∠D=∠ABE,
又∵BE=AD,
∴△ABE≌△ADC;
(2)∵∠AFB=∠CAF+∠FCA,∠AFB=2∠E,
∴2∠E=∠CAF+∠FCA,
∵∠E=∠DAC=∠DCA,
又∵AD∥BC,
∴∠DAC=∠FCA,
∴AD=DC=AF=CF,
∴四边形AFCD是菱形.
∴∠D+∠ECD=180°,
∵BA=AD=DC,
∴∠ABC=∠DCE,
∵∠ABE+∠ABC=180°,
∴∠D=∠ABE,
又∵BE=AD,
∴△ABE≌△ADC;
(2)∵∠AFB=∠CAF+∠FCA,∠AFB=2∠E,
∴2∠E=∠CAF+∠FCA,
∵∠E=∠DAC=∠DCA,
又∵AD∥BC,
∴∠DAC=∠FCA,
∴AD=DC=AF=CF,
∴四边形AFCD是菱形.
练习册系列答案
相关题目