题目内容
如图所示,梯形ABCD中,AB∥CD,两对角线AC、BD交于0点,且BD⊥AD,已知BC=CD=7,则AB=______.
过C作CE∥AD,
∵DC∥AB,
∴四边形ADCE是平行四边形,
∴AE=DC=7,
∵BD⊥AD,
∴∠ADB=90°,
∵AD∥BC,
∴∠EMB=∠ADB=90°,
∴CM⊥DB,
∵DC=BC,
∴△DCB是等腰三角形,
∴∠1=∠2,
∵DC∥AB,
∴∠1=∠3,
∴∠2=∠3,
∴EB=CB=7,
∴AB=7+7=14,
故答案为:14.
∵DC∥AB,
∴四边形ADCE是平行四边形,
∴AE=DC=7,
∵BD⊥AD,
∴∠ADB=90°,
∵AD∥BC,
∴∠EMB=∠ADB=90°,
∴CM⊥DB,
∵DC=BC,
∴△DCB是等腰三角形,
∴∠1=∠2,
∵DC∥AB,
∴∠1=∠3,
∴∠2=∠3,
∴EB=CB=7,
∴AB=7+7=14,
故答案为:14.
练习册系列答案
相关题目