题目内容

【题目】如图,在矩形ABCD中,E为CD的中点,F为BE上的一点,连结CF并延长交AB于点M,MN⊥CM交射线AD于点N.
(1)当F为BE中点时,求证:AM=CE;
(2)若 =2,求 的值;
(3)若 =n,当n为何值时,MN∥BE?

【答案】
(1)解:当F为BE中点时,如图1,则有BF=EF.

∵四边形ABCD是矩形,

∴AB=DC,AB∥DC,

∴∠MBF=∠CEF,∠BMF=∠ECF.

在△BMF和△ECF中,

∴△BMF≌△ECF,

∴BM=EC.

∵E为CD的中点,

∴EC= DC,

∴BM=EC= DC= AB,

∴AM=BM=EC


(2)解:如图2所示:

设MB=a,

∵四边形ABCD是矩形,

∴AD=BC,AB=DC,∠A=∠ABC=∠BCD=90°,AB∥DC,

∴△ECF∽△BMF,

=2,

∴EC=2a,

∴AB=CD=2CE=4a,AM=AB﹣MB=3a.

=2,

∴BC=AD=2a.

∵MN⊥MC,

∴∠CMN=90°,

∴∠AMN+∠BMC=90°.

∵∠A=90°,

∴∠ANM+∠AMN=90°,

∴∠BMC=∠ANM,

∴△AMN∽△BCM,

=

∴AN= a,ND=AD﹣AN=2a﹣ a= a,

= =3


(3)解:当 =n时,如图3:

设MB=a.

∵△MFB∽△CFE,

= ,即 ,解得EC=an.

∴AB=2an.

又∵ =n,

∴BC=2a.

∵MN∥BE,MN⊥MC,

∴∠EFC=∠HMC=90°,

∴∠FCB+∠FBC=90°.

∵∠MBC=90°,

∴∠BMC+∠FCB=90°,

∴∠BMC=∠FBC.

∵∠MBC=∠BCE=90°,

∴△MBC∽△BCE,

∴n=4.


【解析】(1)如图1,易证△BMF≌△ECF,则有BM=EC,然后根据E为CD的中点及AB=DC就可得到AM=EC;(2)如图2,设MB=a,易证△ECF∽△BMF,根据相似三角形的性质可得EC=2a,由此可得AB=4a,AM=3a,BC=AD=2a.易证△AMN∽△BCM,根据相似三角形的性质即可得到AN= a,从而可得ND=AD﹣AN= a,就可求出 的值;(3)如图3,设MB=a,依据相似三角形的性质可得BC=2a,CE=na.由MN∥BE,MN⊥MC可得∠EFC=∠HMC=90°,从而可证到△MBC∽△BCE,然后根据相似三角形的性质即可求出n的值.
【考点精析】解答此题的关键在于理解矩形的性质的相关知识,掌握矩形的四个角都是直角,矩形的对角线相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网