题目内容
【题目】某学校为了解该校七年级学生的身高情况,抽样调查了部分同学,将所得数据处理后,制成扇形统计图和频数分布直方图(部分)如下(每组只含最低值不含最高值,身高单位:cm,测量时精确到1cm):
(1)请根据所提供的信息计算身高在160~165cm范围内的学生人数,并补全频数分布直方图;
(2)样本的中位数在统计图的哪个范围内?
(3)如果上述样本的平均数为157cm,方差为0.8;该校八年级学生身高的平均数为159cm,方差为0.6,那么(填“七年级”或“八年级”)学生的身高比较整齐.
【答案】
(1)
解:总数为:32÷32%=100,则160﹣165的频数为:100﹣6﹣12﹣18﹣32﹣10﹣4=18或100×18%=18.
根据数据正确补全频数分布直方图,如下图:
(2)
解:第50和51个数的平均数在155~160cm的范围内,所以样本的中位数在155~160cm的范围内;
(3)八年级
【解析】(3)方差越小,数据的离散程度越小,所以八年级学生的身高比较整齐.
故答案为:八年级.
(1)根据155﹣160的频数和百分比求总数.从而求出160﹣165的频数,根据数据正确补全频数分布直方图即可;(2)根据中位数的确定方法求解;(3)利用方差的意义判断.
练习册系列答案
相关题目
【题目】某工厂计划生产A,B两种产品共10件,其生产成本和利润如下表:
A种产品 | B种产品 | |
成本(万元∕件) | 3 | 5 |
利润(万元∕件) | 1 | 2 |
(1)若工厂计划获利14万元,问A,B两种产品应分别生产多少件?
(2)若工厂投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案?
(3)在(2)条件下,哪种方案获利最大?并求最大利润.