题目内容
【题目】如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是
( )
A.
B.
C.5
D.6
【答案】C
【解析】连接EF交AC于O,∵四边形EGFH是菱形,∴EF⊥AC,OE=OF,∵四边形ABCD是矩形,∴∠B=∠D=90°,AB∥CD,∴∠ACD=∠CAB,
在△CFO与△AOE中,∠FCO=∠OAB , ∠FOC=∠AOE,OF=OE,∴△CFO≌△AOE,∴AO=CO,∵AC=,∴AO=AC=2,
∵∠CAB=∠CAB,∠AOE=∠B=90°,∴△AOE∽△ABC,∴,∴,∴AE=5.故选C.
连接EF交AC于O,由四边形EGFH是菱形,得到EF⊥AC,OE=OF,由于四边形ABCD是矩形,得到∠B=∠D=90°,AB∥CD,通过△CFO≌△AOE,得到AO=CO,求出AO=AC=2 , 根据△AOE∽△ABC,即可得到结果.
练习册系列答案
相关题目