题目内容
【题目】△ABC中,∠ACB=900,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
当直线MN绕点C旋转到图1的位置时,求证: ≌△CBE;②DE=AD+BE;
当直线MN绕点C旋转到图2的位置时,中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.
【答案】(1)证明见解析;(2)不成立,DE=AD-BE
【解析】
(1)由∠ACB=90°,得∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,则∠ADC=∠CEB=90°,根据等角的余角相等得到∠ACD=∠CBE,易得Rt△ADC≌Rt△CEB,所以AD=CE,DC=BE,即可得到DE=DC+CE=BE+AD.
(2)根据等角的余角相等得到∠ACD=∠CBE,易得△ADC≌△CEB,得到AD=CE,DC=BE,所以DE=CE-CD=AD-BE.
(1)证明:∵∠ACB=90°,
∴∠ACD+∠BCE=90°,
而AD⊥MN于D,BE⊥MN于E,
∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,
∴∠ACD=∠CBE.
在△ADC和△CEB中,
,
∴△ADC≌△CEB,
∴AD=CE,DC=BE,
∴DE=DC+CE=BE+AD;
(2)DE=AD-BE,
在△ADC和△CEB中,
,
∴△ADC≌△CEB,
∴AD=CE,DC=BE,
∴DE=CE-CD=AD-BE;
故答案为:DE=AD-BE
练习册系列答案
相关题目