题目内容
如图,⊙O是△ABC的内切圆,与AB、BC、CA分别相切于点D、E、F,∠DEF=45度.连接BO并延长交AC于点G,AB=4,AG=2.
(1)求∠A的度数;
(2)求⊙O的半径.

(1)求∠A的度数;
(2)求⊙O的半径.

(1)连接OD,OF,
∵⊙O是△ABC的内切圆,
∴OD⊥AB,OF⊥AC,又∠DOF=2∠DEF=2×45°=90°,
∴∠ODA=∠OFA=∠DOF=90°,
∴四边形ADOF是矩形,
∴∠A=90°;
(2)设⊙O的半径为r,
由(1)知四边形ADOF是矩形,又OD=OF,
∴四边形ADOF是正方形.
∴OD∥AC.
∴△BOD∽△BGA.
∴
=
.
即
=
,
解得r=
.
∴⊙O的半径为
.

∵⊙O是△ABC的内切圆,
∴OD⊥AB,OF⊥AC,又∠DOF=2∠DEF=2×45°=90°,
∴∠ODA=∠OFA=∠DOF=90°,
∴四边形ADOF是矩形,
∴∠A=90°;
(2)设⊙O的半径为r,
由(1)知四边形ADOF是矩形,又OD=OF,
∴四边形ADOF是正方形.
∴OD∥AC.
∴△BOD∽△BGA.
∴
DO |
AG |
BD |
BA |
即
r |
2 |
4-r |
4 |
解得r=
4 |
3 |
∴⊙O的半径为
4 |
3 |


练习册系列答案
相关题目