题目内容

【题目】如图1,在平行四边形ABCD中,E,F分别在边AD,AB上,连接CE,CF,且满足∠DCE=∠BCF,BF=DE,∠A=60°,连接EF.

(1)若EF=2,求AEF的面积;

(2)如图2,取CE的中点P,连接DP,PF,DF,求证:DP⊥PF.

【答案】(1) (2)证明见解析

【解析】分析:(1)先证明△CDE≌△CBF,得到CD=CB,可得ABCD是菱形,则AD=AB,由DE=BFAE=AF,则△AEF是等边三角形,根据EF的长可得△AEF的面积;

(2)延长DPBCN,连结FN,证明△CPN≌△EPD,得到AE=BN,证明△FBN≌△DEF,得到FN=FD,根据等腰三角形三线合一的性质可得结论.

详解:(1)∵四边形ABCD是平行四边形,

∴∠D=B,

BF=DE,DCE=BCF,

∴△CDE≌△CBF(AAS),

CD=CB,

ABCD是菱形,

AD=AB,

AD﹣DE=AB﹣BF,即AE=AF,

∵∠A=60°,

∴△AEF是等边三角形,

EF=2,

SAEF=×22=

(2)证明:如图2,延长DPBCN,连结FN,

∵四边形ABCD是菱形,

ADBC,

∴∠EDP=PNC,DEP=PCN,

∵点PCE的中点,

CP=EP.

∴△CPN≌△EPD,

DE=CN,PD=PN.

又∵AD=BC.

AD﹣DE=BC﹣CN,即AE=BN.

∵△AEF是等边三角形,

∴∠AEF=60°,EF=AE.

∴∠DEF=120°,EF=BN.

ADBC,

∴∠A+ABC=180°,

又∵∠A=60°,

∴∠ABC=120°,

∴∠ABC=DEF.

又∵DE=BF,BN=EF.

∴△FBN≌△DEF,

DF=NF,

PD=PN,

PFPD.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网