题目内容

已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥AC于点D,过点C作⊙O 的切线, 交OD的延长线与点E,连接AE.

(1)求证:AE与⊙O相切;
(2)连接BD并延长交AE于点F,若EC∥AB,OA=6,求AF的长.
(1)连接OC,根据切线的性质可得∠OCE=90°,由OA=OC,OD⊥AC可得∠COE=∠AOE,即可证得△COE≌△AOE,则可得∠OAE =∠OCE = 90°,从而证得结论;(2)4

试题分析:(1)连接OC,根据切线的性质可得∠OCE=90°,由OA=OC,OD⊥AC可得∠COE=∠AOE,即可证得△COE≌△AOE,则可得∠OAE =∠OCE = 90°,从而证得结论;
(2)设BF与OC相交于点G,先证得四边形OAEC是矩形,再结合OA=OC可得矩形OAEC是正方形,则可得OG∥AE,AE=AO=6,OD=ED,所以有,则可得OG=EF,由OG∥AE可得,即可得到,从而求得结果.
(1)连接OC

∵CE是⊙O的切线
∴∠OCE=90°
∵OA=OC,OD⊥AC
∴∠COE=∠AOE
∵OA=OC,∠COE=∠AOE,OE=OE
∴△COE≌△AOE(SAS)
∴∠OAE=∠OCE=90°
∴OA⊥AE
∴AE与⊙O相切;
(2)设BF与OC相交于点G
∵EC∥AB
∴∠AEC=∠OAE=90°
∵∠AEC=∠OAE=∠OCE=90°
∴四边形OAEC是矩形
∵OA=OC
∴矩形OAEC是正方形
∴OG∥AE,AE=AO=6,OD=ED
∵OG∥AE

∴OG=EF
∵OG∥AE


.
点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网