题目内容
【题目】已知:如图,O为平面直角坐标系的原点,半径为1的⊙B经过点O,且与x,y轴分交于点A,C,点A的坐标为(﹣ ,0),AC的延长线与⊙B的切线OD交于点D.
(1)求OC的长和∠CAO的度数;
(2)求过D点的反比例函数的表达式.
【答案】
(1)
解:∵∠AOC=90°,
∴AC是⊙B的直径.
∴AC=2.
又∵点A的坐标为(﹣ ,0),
∴OA= .
∴ .
∴sin∠CAO= .
∴∠CAO=30°
(2)
解:如图,连接OB,过点D作DE⊥x轴于点E,
∵OD为⊙B的切线,
∴OB⊥OD.
∴∠BOD=90°.
∵AB=OB,
∴∠AOB=∠OAB=30°.
∴∠AOD=∠AOB+∠BOD=30°+90°=120°.
在△AOD中,∠ODA=180°﹣120°﹣30°=30°=∠OAD.
∴OD=OA= .
在Rt△DOE中,∠DOE=180°﹣120°=60°,
∴OE=ODcos60°= OD= ,ED=ODsin60°= .
∴点D的坐标为 .
设过D点的反比例函数的表达式为 ,
∴ .
∴ .
【解析】(1)在直角三角形ACO中,根据已知条件可以求得OA,AC的长,再根据勾股定理求得OC的长,根据锐角三角函数的概念求得∠CAO的度数;(2)要求反比例函数的表达式,需要求得点D的坐标.作DE⊥x轴于点E,根据对顶角相等和弦切角定理可以求得∠DOE=60°.所以只需再求得OD的长,根据三角形的外角的性质可以求得∠ADO=30°.则OD=OA.从而求得OE,DE的长,再根据点D的坐标求得反比例函数的表达式.
【考点精析】认真审题,首先需要了解切线的性质定理(切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径).