题目内容

如图,在四边形ABCD中,已知AB=BC=2,CD=3,DA=1,∠B=90°,则∠DAB=
135
135
度.
分析:由于∠B=90°,AB=BC=2,利用勾股定理可求AC,并可求∠BAC=45°,而CD=3,DA=1,易得AC2+DA2=CD2,可证△ACD是直角三角形,∠CAD=90°,从而易求∠BAD.
解答:解:∵∠B=90°,AB=BC=2,
∴AC=
AB2+BC2
=2
2
,∠BAC=45°,
又∵CD=3,DA=1,
∴AC2+DA2=8+1=9,CD2=9,
∴AC2+DA2=CD2
∴△ACD是直角三角形,
∴∠CAD=90°,
∴∠BAD=45°+90°=135°.
故答案为:135.
点评:本题考查了等腰三角形的性质、勾股定理及勾股定理的逆定理,解题的关键是利用勾股定理的逆定理证明△ACD是直角三角形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网