题目内容
【题目】阅读材料:已知实数m、n满足,求的值.
解:设,则原方程可化为(t+1)(t-1)=35,整理得t2-1=35,t2=36,
∴t=±6,
∵,
∴
上面这种解题方法为“换元法”,在结构较复杂的数和式的运算中,若把其中某些部分看成一个整体,则能使复杂的问题简单化,根据“换元法”解决下列问题:
(1)已知实数x、y满足,求的值;
(2)若四个连续正整数的积为360,求这四个连续的正整数.
【答案】(1);(2)这四个连续的正整数分别是3,4,5,6.
【解析】
(1)设将原方程可化为并求解即得.
(2)设最小的正整数为,则另外三个正整数分别为、、,可根据题意得出,变形为,再设,并换元为关于的一元二次方程求解,进而再解关于的方程即得.
解:(1)设,
则原方程可化为,
整理得,
解得,
∵,
∴
∴;
(2)设最小的正整数为,则另外三个正整数分别为、、,
根据题意得:,
,
,
设,则原方程为,
整理得,
∴
∴
∴,∴,,
∵,∴,∴.
∴,解得,(舍去).
∴这四个连续的正整数分别是3,4,5,6.
【题目】 郑州某商场在“六一”儿童节购进一批儿童智力玩具.已知成批购进时单价20元,调查发现:该玩具的月销售量y(个)与销售单价x(元)之间满足一次函数关系,下表是月销售量、销售单价的几组对应关系:
月销售单价x/元 | 30 | 35 | 40 | 45 |
月销售量y/个 | 230 | 180 | 130 | m |
(1)求y与x的函数关系式;
(2)根据以上信息填空:
①m=______;
②当销售单价x=______元时,月销售利润最大,最大利润是______元;
(3)根据物价部门规定,每件玩具售价不能高于40元,若月销售利润不低于2520元,试求销售单价x的取值范围.
【题目】某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(单位:千帕)随气体体积V(单位:立方米)的变化而变化,p随V的变化情况如表所示.
P | 1.5 | 2 | 2.5 | 3 | 4 | … |
V | 64 | 48 | 38.4 | 32 | 24 | … |
(1)写出一个符合表格数据的p关于V的函数解析式
(2)当气球内的气压大于144千帕时,气球将爆炸,依照(1)中的函数解析式,基于安全考虑,气球的体积至少为多少立方米?
【题目】如图1,AB为半圆O的直径,半径的长为4cm,点C为半圆上一动点,过点C作CE⊥AB,垂足为点E,点D为弧AC的中点,连接DE,如果DE=2OE,求线段AE的长.
小何根据学习函数的经验,将此问题转化为函数问题解决.
小华假设AE的长度为xcm,线段DE的长度为ycm.
(当点C与点A重合时,AE的长度为0cm),对函数y随自变量x的变化而变化的规律进行探究.
下面是小何的探究过程,请补充完整:(说明:相关数据保留一位小数).
(1)通过取点、画图、测量,得到了x与y的几组值,如下表:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
y/cm | 0 | 1.6 | 2.5 | 3.3 | 4.0 | 4.7 |
| 5.8 | 5.7 |
当x=6cm时,请你在图中帮助小何完成作图,并使用刻度尺度量此时线段DE的长度,填写在表格空白处:
(2)在图2中建立平面直角坐标系,描出补全后的表中各组对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象解决问题,当DE=2OE时,AE的长度约为 cm.