题目内容
【题目】如图所示,线段AB=6cm,C点从P点出发以1cm/s的速度沿AB向左运动,D点从B出发以2cm/s的速度沿AB向左运动(C在线段AP上,D在线段BP上)
(1)若C,D运动到任意时刻都有PD=2AC,求出P在AB上的位置;
(2)在(1)的条件下,Q是直线AB上一点,若AQ﹣BQ=PQ,求PQ的值;
(3)在(1)的条件下,若C,D运动了一段时间后恰有AB=2CD,这时点C停止运动,点继续在线段PB上运动,M,N分别是CD,PD的中点,求出MN的值.
【答案】
(1)解:根据C、D的运动速度知:BD=2PC.
∵PD=2AC,
∴BD+PD=2(PC+AC),即PB=2AP,
∴点P在线段AB上的 处
(2)解:如图1:
∵AQ﹣BQ=PQ,
∴AQ=PQ+BQ;
又∵AQ=AP+PQ,
∴AP=BQ,
∴PQ= AB=2cm;
当点Q'在AB的延长线上时,
AQ′﹣AP=PQ′,
所以AQ′﹣BQ′=PQ=AB=6cm.
综上所述,PQ=2cm或6cm
(3)解:MN的值不变.
理由:如图2,当C点停止运动时,有CD= AB=3cm,
∴AC+BD= AB=3cm,
∴AP﹣PC+BD= AB=3cm,
∵AP= AB=2cm,PC=5cm,BD=10cm,
∵M是CD中点,N是PD中点,
∴MN=MD﹣ND= CD﹣ PD= CP= cm.
【解析】(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上的 处;(2)由题设画出图示,根据AQ﹣BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ与AB的关系;(3)当C点停止运动时,有CD= AB,故AC+BD= AB,所以AP﹣PC+BD= AB,再由AP= AB,PC=5cm,BD=10cm,再根据M是CD中点,N是PD中点可得出MN的长,进而可得出结论.
【考点精析】本题主要考查了两点间的距离的相关知识点,需要掌握同轴两点求距离,大减小数就为之.与轴等距两个点,间距求法亦如此.平面任意两个点,横纵标差先求值.差方相加开平方,距离公式要牢记才能正确解答此题.
【题目】2015年10月29日,党的十八届五种全会胜利闭幕,某中学七、八年级各选派10名选手参加“党的十八届五中全会知识竞赛”计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀.这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分的选手人数分别为a,b.
队别 | 平均分 | 中位数 | 方差 | 合格率 | 优秀率 |
七年级 | 6.7 | m | 3.41 | 90% | n |
八年级 | 7.1 | 7.5 | 1.69 | 80% | 10% |
(1)请依据图表中的数据,求a,b的值;
(2)直接写出表中的m= ,n= ;
(3)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.