题目内容
【题目】在△ABC中,∠BAC=120°,AB=AC,∠ACB的平分线交AB于D,AE平分∠BAC交BC于E,连接DE,DF⊥BC于F,则∠EDC=_____°.
【答案】30
【解析】
过D作DM⊥AC交CA的延长线于M,DN⊥AE,根据角平分线的性质得到DF=DM,根据邻补角的定义得到∠DAM=60°,根据角平分线的定义得到∠BAE=60°,推出DE平分∠AEB,根据等腰三角形的性质得到∠AEB=90°,得到∠DEF=45°,根据三角形的外角的性质即可得到结论.
过D作DM⊥AC交CA的延长线于M,DN⊥AE,
∵CD平分∠ACB,
∴DF=DM,
∵∠BAC=120°,
∴∠DAM=60°,
∵AE平分∠BAC,
∴∠BAE=60°,
∴∠DAM=∠BAE,
∴DM=DN,
∴DF=DN,
∵DF⊥BC,
∴DE平分∠AEB,
∵AB=AC,AE平分∠BAC交BC于E,
∴AE⊥BC,
∴∠AEB=90°,
∴∠DEF=45°,
∵∠B=∠ACB=30°,CD平分∠ACB,
∴∠DCF=15°,
∴∠EDC=∠DEF -∠DCF=30°.
故答案为:30.
练习册系列答案
相关题目