题目内容

【题目】△ABC中,∠BAC=120°,AB=AC,∠ACB的平分线交ABD,AE平分∠BACBCE,连接DE,DF⊥BCF,则∠EDC=_____°.

【答案】30

【解析】

DDM⊥ACCA的延长线于M,DN⊥AE,根据角平分线的性质得到DF=DM,根据邻补角的定义得到∠DAM=60°,根据角平分线的定义得到∠BAE=60°,推出DE平分∠AEB,根据等腰三角形的性质得到∠AEB=90°,得到∠DEF=45°,根据三角形的外角的性质即可得到结论.

DDM⊥ACCA的延长线于M,DN⊥AE,

∵CD平分∠ACB,

∴DF=DM,

∵∠BAC=120°,

∴∠DAM=60°,

∵AE平分∠BAC,

∴∠BAE=60°,

∴∠DAM=∠BAE,

∴DM=DN,

∴DF=DN,

∵DF⊥BC,

∴DE平分∠AEB,

∵AB=AC,AE平分∠BACBCE,

∴AE⊥BC,

∴∠AEB=90°,

∴∠DEF=45°,

∵∠B=∠ACB=30°,CD平分∠ACB,

∴∠DCF=15°,

∴∠EDC=∠DEF -∠DCF=30°.

故答案为:30.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网