题目内容

【题目】如图,将边长为10的正三角形OAB放置于平面直角坐标系xOy中,C是AB边上的动点(不与端点A,B重合),作CD⊥OB于点D,若点C,D都在双曲线y= 上(k>0,x>0),则k的值为(  )

A.25
B.18
C.9
D.9

【答案】C
【解析】解:过点A作AE⊥OB于点E,如图所示.

∵△OAB为边长为10的正三角形,
∴点A的坐标为(10,0)、点B的坐标为(5,5 ),点E的坐标为( ).
∵CD⊥OB,AE⊥OB,
∴CD∥AE,
.设 =n(0<n<1),∴点D的坐标为( ),点C的坐标为(5+5n,5 ﹣5 n).∵点C、D均在反比例函数y= 图象上,∴ ,解得:
故选C.
过点A作AE⊥OB于点E,根据正三角形的性质以及三角形的边长可找出点A、B、E的坐标,再由CD⊥OB,AE⊥OB可找出CD∥AE,即得出 ,令该比例 =n,根据比例关系找出点D、C的坐标,利用反比例函数图象上点的坐标特征即可得出关于k、n的二元一次方程组,解方程组即可得出结论.本题考查了反比例函数图象上点的坐标特征、平行线的性质以及等边三角形的性质,解题的关键是找出点D、C的坐标.本题属于中档题,稍显繁琐,解决该题型题目时,巧妙的借助了比例来表示点的坐标,根据反比例函数图象上点的坐标特征找出方程组是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网