题目内容
【题目】如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A、B在x轴上,且OA=OB.点P为⊙C上的动点,∠APB=90°,则AB长度的最小值为( )
A.4B.3C.7D.8
【答案】A
【解析】
连接OC,交⊙C上一点P,以O为圆心,以OP为半径作⊙O,交x轴于A、B,此时AB的长度最小,根据勾股定理和题意求得OP=2,则AB的最小长度为4.
解:如图,连接OC,交⊙C上一点P,以O为圆心,以OP为半径作⊙O,交x轴于A、B,此时AB的长度最小,
∵C(3,4),
∴OC==5,
∵以点C为圆心的圆与y轴相切.
∴⊙C的半径为3,
∴OP=OC﹣3=2,
∴OP=OA=OB=2,
∵AB是直径,
∴∠APB=90°,
∴AB长度的最小值为4,
故选:A.
练习册系列答案
相关题目
【题目】为拓宽学生视野,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级开展研学旅行活动,在参加此次活动的师生中,若每位老师带名学生,还剩名学生没人带;若每位老师带名学生,则有一位老师少带名学生.现有甲、乙两种大客车,它们的载客量和租金如下表所示.
甲种客车 | 已和客车 | |
载客量(人/量) | ||
租金(元/辆) |
学校计划此次研学旅行活动的租车总费用不超过元,为了安全,每辆客车上至少要有名老师.
(1)参加此次研学旅行活动的老师和学生各有多少人?
(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有名老师,可求得租用客车总数为______辆.
(3)在(2)的条件下,你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.