题目内容

【题目】如图,已知等边△ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD.

(1)求证:DF是⊙O的切线;
(2)求FG的长;
(3)求tan∠FGD的值.

【答案】
(1)证明:连结OD,如图,

∵△ABC为等边三角形,

∴∠C=∠A=∠B=60°,

而OD=OB,

∴△ODB是等边三角形,∠ODB=60°,

∴∠ODB=∠C,

∴OD∥AC,

∵DF⊥AC,

∴OD⊥DF,

∴DF是⊙O的切线


(2)解:∵OD∥AC,点O为AB的中点,

∴OD为△ABC的中位线,

∴BD=CD=6.

在Rt△CDF中,∠C=60°,

∴∠CDF=30°,

∴CF= CD=3,

∴AF=AC﹣CF=12﹣3=9,

在Rt△AFG中,∵∠A=60°,

∴FG=AF×sinA=9× =


(3)解:过D作DH⊥AB于H.

∵FG⊥AB,DH⊥AB,

∴FG∥DH,

∴∠FGD=∠GDH.

在Rt△BDH中,∠B=60°,

∴∠BDH=30°,

∴BH= BD=3,DH= BH=3

在Rt△AFG中,∵∠AFG=30°,

∴AG= AF=

∵GH=AB﹣AG﹣BH=12﹣ ﹣3=

∴tan∠GDH= = =

∴tan∠FGD=tan∠GDH=


【解析】(1)连结OD,根据等边三角形的性质得∠C=∠A=∠B=60°,而OD=OB,所以∠ODB=60°=∠C,于是可判断OD∥AC,又DF⊥AC,则OD⊥DF,根据切线的判定定理可得DF是⊙O的切线;(2)先证明OD为△ABC的中位线,得到BD=CD=6.在Rt△CDF中,由∠C=60°,得∠CDF=30°,根据含30度的直角三角形三边的关系得CF= CD=3,所以AF=AC﹣CF=9,然后在Rt△AFG中,根据正弦的定义计算FG的长;(3)过D作DH⊥AB于H,由垂直于同一直线的两条直线互相平行得出FG∥DH,根据平行线的性质可得∠FGD=∠GDH.解Rt△BDH,得BH= BD=3,DH= BH=3 .解Rt△AFG,得AG= AF= ,则GH=AB﹣AG﹣BH= ,于是根据正切函数的定义得到tan∠GDH= = ,则tan∠FGD可求.
【考点精析】认真审题,首先需要了解等边三角形的性质(等边三角形的三个角都相等并且每个角都是60°),还要掌握切线的判定定理(切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网