题目内容

【题目】如图,一次函数y1=x﹣2的图象与反比例函数y2= 的图象相交于A,B两点,与x轴相交于点C.已知tan∠BOC= ,点B的坐标为(m,n),求反比例函数的解析式.

【答案】解:过点B作BD⊥x轴于点D,如图1所示.

则BD=n,OD=m.
∵tan∠BOD= =
∴m=2n.
又∵点B在直线y1=x﹣2上,
∴n=m﹣2.
∴n=2n﹣2,解得:n=2,
则m=4.
∴点B的坐标为(4,2).
将(4,2)代入y2= 得, =2,
∴k=8.
∴反比例函数的解析式为y2=
【解析】过点B作BD⊥x轴于点D,由点B的坐标结合tan∠BOC= 可得出m与n的关系,将点B坐标代入一次函数y1=x﹣2中可得出关于m、n的二元一次方程,结合前面得出的m、n之间的关系即可得出点B的坐标,再由点B的坐标结合待定系数法即可求出反比例函数的解析式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网