题目内容
【题目】如图,⊙C 经过原点且与两坐标轴分别交于点 A 与点 B,点 B 的坐标为(﹣,0),M 是圆上一点,∠BMO=120°.⊙C 圆心 C 的坐标是_____.
【答案】(,
)
【解析】
连接AB,OC,由圆周角定理可知AB为⊙C的直径,再根据∠BMO=120°可求出∠BAO以及∠BCO的度数,在Rt△COD中,解直角三角形即可解决问题;
连接AB,OC,
∵∠AOB=90°,
∴AB为⊙C的直径,
∵∠BMO=120°,
∴∠BAO=60°,
∴∠BCO=2∠BAO=120°,
过C作CD⊥OB于D,则OD=OB,∠DCB=∠DCO=60°,
∵B(-,0),
∴BD=OD=
在Rt△COD中.CD=ODtan30°=,
∴C(-,
),
故答案为:C(-,
).
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
【题目】某社区准备五一组织社区内老年人去到县参加采摘节,现有甲、乙两家旅行社表示对老年人优惠,甲旅行社的优惠方式为:在原来每人100元的基础上,每人按照原价的60%收取费用;乙旅行社的优惠方式为:在收取一个600元固定团费的基础上,再额外收取每人40元.设参加采摘节的老年人有x人,甲、乙两家旅行社实际收费为元、
元.
(Ⅰ)根据题意,填写下表:
老年人数量(人) | 5 | 10 | 20 | |
甲旅行社收费(元) | 300 | |||
乙旅行社收费)(元) | 800 |
(Ⅱ)求、
关于x的函数关系式(不用写出自变量的取值范围)?
(Ⅲ)如果,选择哪家旅行社合算?