题目内容

【题目】在如图的正方形网格中,每一个小正方形的边长均为 1.格点三角形 ABC(顶点是网格线交点的三角形)的顶点 A、C 的坐标分别是(﹣2,0),(﹣3,3).

(1)请在图中的网格平面内建立平面直角坐标系,写出点 B 的坐标;

(2)把△ABC 绕坐标原点 O 顺时针旋转 90°得到△A1B1C1,画出△A1B1C1,写出点

B1的坐标;

(3)以坐标原点 O 为位似中心,相似比为 2,把△A1B1C1 放大为原来的 2 倍,得到△A2B2C2 画出△A2B2C2,使它与△AB1C1 在位似中心的同侧;

请在 x 轴上求作一点 P,使△PBB1 的周长最小,并写出点 P 的坐标.

【答案】(1)(﹣4,1);(2)(1,4);(3)见解析;(4)P(﹣3,0).

【解析】

(1)先建立平面直角坐标系,再确定B的坐标;(2)根据旋转要求画出△A1B1C1再写出点B1的坐标;(3)根据位似的要求,作出△A2B2C2;(4)作点B关于x轴的对称点B',连接B'B1,交x轴于点P,则点P即为所求.

解:(1)如图所示,点B的坐标为(﹣4,1);

(2)如图,△A1B1C1即为所求,点B1的坐标(1,4);

(3)如图,△A2B2C2即为所求;

(4)如图,作点B关于x轴的对称点B',连接B'B1,交x轴于点P,则点P即为所求,P(﹣3,0).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网