题目内容
【题目】如图,CD⊥AB,BE⊥AC,垂足分别为D,E,BE,CD相交于点O,OB=OC,连接AO,则图中一共有( )对全等三角形.
A. 2B. 3C. 4D. 5
【答案】C
【解析】
共有四对.分别为△ADO≌△AEO,△ADC≌△AEB,△ABO≌△ACO,△BOD≌△COE.做题时要从已知条件开始结合图形利用全等的判定方法由易到难逐个寻找.
解:∵CD⊥AB,BE⊥AC,OB=OC,
∴∠ADO=∠AEO=90°,∠DOB=∠EOC,
∵BO=CO,
∴△DOB≌△EOC;
∴OD=OE,BD=CE;
∵OA=OA,OD=OE,∠ADO=∠AEO=90°,
∴△ADO≌△AEO;
∴AD=AE,∠DAO=∠EAO;
∵AB=AC,∠DAO=∠EAO,OA=OA,
∴△ABO≌△ACO;
∵AD=AE,AC=AB,∠BAE=∠CAD,
∴△ADC≌△ABE(SSS).
所以共有四对全等三角形.
故选:C.
练习册系列答案
相关题目
【题目】九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:
时间x(天) | 1≤x<50 | 50≤x≤90 |
售价(元/件) | x+40 | 90 |
每天销量(件) | 200﹣2x | 200﹣2x |
已知该商品的进价为每件30元,设销售该商品的每天利润为y元
(1)求出y与x的函数关系式;
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?
(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.