题目内容
【题目】在中,,点为直线上一动点(点不与点重合),以为腰作等腰直角,使,连接.
(1)观察猜想
如图1,当点在线段上时,
①与的位置关系为__________;
②之间的数量关系为___________(提示:可证)
(2)数学思考
如图2,当点在线段的延长线上时,(1)中的①、②结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明;
(3)拓展延伸
如图3,当点在线段的延长线时,将沿线段翻折,使点与点重合,连接,若,请直接写出线段的长.(提示:做于,做于)
【答案】(1)①BC⊥CF;②BC=CF+DC;(2)C⊥CF成立;BC=CF+DC不成立,正确结论:DC=CF+BC,证明详见解析;(3)
【解析】
(1)①根据正方形的性质得,∠BAC=∠DAF=90°,推出△DAB≌△FAC(SAS);②由正方形ADEF的性质可推出△DAB≌△FAC,根据全等三角形的性质可得到, ,根据余角的性质即可得到结论;
(2)根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质以及等腰三角形的角的性质可得到结论;
(3)过A作 于H,过E作 于M,证明 ,推出 , ,推出 ,即可解决问题.
(1)①正方形ADEF中,
∵
∴
在△DAB与△FAC中
∴
∴
∴ ,即 ;
②∵
∴
∵
∴
(2)BC⊥CF成立;BC=CF+DC不成立,正确结论:DC=CF+BC
证明:∵△ABC和△ADF都是等腰直角三角形
∴AB=AC,AD=AF,∠BAC=∠DAF=90°,
∴∠BAD=∠CAF
在△DAB和△FAC中
∴△DAB≌△FAC(SAS)
∴∠ABD=∠ACF,DB=CF
∵∠BAC=90°,AB=AC,
∴∠ACB=∠ABC=45°
∴∠ABD=180°-45°=135°
∴∠ACF=∠ABD=135°
∴∠BCF=∠ACF-∠ACB=135°-45°=90°,
∴CF⊥BC
∵CD=DB+BC,DB=CF
∴DC=CF+BC
(3)过A作 于H,过E作 于M,
∵ ,
∴
∴
∴
∵四边形ADEF是正方形
∴
∵
∴四边形CMEN是矩形
∴
∵
∴
∴
在△ADH和△DEM中
∴
∴
∴
∴