题目内容
如图?ABCD中,BE⊥AD于E,BF⊥CD于F,若∠EBF=60°,且AE=3,DF=2,则EC的长为( )
A.6
| B.
| C.9 | D.10 |
∵BE⊥AD,BF⊥CD,
∴∠BFD=∠BED=∠BFC=∠BEA=90°,
∵∠EBF=60°,
∴∠D=120°,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠BCD=∠A=60°,
∵在△ABE中,∠ABE=30°,
∴AB=2AE=2×3=6,
∴CD=AB=6,BE=
=3
,
∴CF=CD-DF=6-2=4,
∵在△BFC中,∠CBF=30°,
∴BC=2CF=2×4=8,
∴CE=
=
.
故选B.
∴∠BFD=∠BED=∠BFC=∠BEA=90°,
∵∠EBF=60°,
∴∠D=120°,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠BCD=∠A=60°,
∵在△ABE中,∠ABE=30°,
∴AB=2AE=2×3=6,
∴CD=AB=6,BE=
AB2-AE2 |
3 |
∴CF=CD-DF=6-2=4,
∵在△BFC中,∠CBF=30°,
∴BC=2CF=2×4=8,
∴CE=
BE2+BC2 |
91 |
故选B.
练习册系列答案
相关题目