题目内容

【题目】如图,抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),顶点为D.

(1)求此抛物线的解析式.
(2)求此抛物线顶点D的坐标和对称轴.
(3)探究对称轴上是否存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.

【答案】
(1)

解:∵抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),

解得,

即此抛物线的解析式是y=x2﹣2x﹣3;


(2)

解:∵y=x2﹣2x﹣3=(x﹣1)2﹣4,

∴此抛物线顶点D的坐标是(1,﹣4),对称轴是直线x=1


(3)

解:存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形,

设点P的坐标为(1,y),

当PA=PD时,

=

解得,y=﹣

即点P的坐标为(1,﹣ );

当DA=DP时,

=

解得,y=﹣4±2

即点P的坐标为(1,﹣4﹣2 )或(1,﹣4+2 );

当AD=AP时,

=

解得,y=±4,

即点P的坐标是(1,4)或(1,﹣4),

当点P为(1,﹣4)时与点D重合,故不符合题意,

由上可得,以点P、D、A为顶点的三角形是等腰三角形时,点P的坐标为(1,﹣ )或(1,﹣4﹣2 )或(1,﹣4+2 )或(1,4)


【解析】(1)根据抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),可以求得抛物线的解析式;(2)根据(1)中的解析式化为顶点式,即可得到此抛物线顶点D的坐标和对称轴;(3)首先写出存在,然后运用分类讨论的数学思想分别求出各种情况下点P的坐标即可.本题考查二次函数综合题,解题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答问题.
【考点精析】认真审题,首先需要了解二次函数的图象(二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网