题目内容

【题目】如图所示,已知AEAB,AFAC,AE=AB,AF=AC.

(1)问线段ECBF数量关系和位置关系?并给予证明.

(2)连AM,请问∠AME的大小是多少,如能求写出过程;不能求,写出理由.

【答案】1EC⊥BF, EC=BF2∠AME=45°.

【解析】

(1)先由条件可以得出∠EAC=FAB,再证明EAC≌△BAF就可以得出结论.

(2)作ANEC,AHBF,通过(1)中已知条件证明RtAMH RtAMN,即可求解.

(1)理由: ABEC的交点为G

AEAB,AFAC,

∴∠EAB=CAF=90°,

∴∠EAB+BAC=CAF+BAC,

∴∠EAC=FAB

EACBAF中,AE=AB, EAC=FAB,AF=AC

∴△EAC≌△BAF

EC=BF, AEC=FBA

∵∠AEG+AGE=90°,AGE=BGM,

∴∠ABF+BGM=90°

∴∠BME=90°,

ECBF.

(2)作ANEC,AHBF

EAC≌△BAF,ANEC,AHBF

AH=AN

AMEC,ANBF

RtAMH RtAMN中,AH=AN,AM=AM

RtAMH RtAMN(HL)

∴∠AMH =AMN

ECBF

∴∠AME=45°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网