题目内容
【题目】如图,AB∥CD,以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于E、F两点;再分别以E、F为圆心,大于的长为半径画弧,两弧交于点P,作射线AP,交CD于点M.若∠CMA=25°,则∠C的度数为( )
A.100°B.110°C.120°D.130°
【答案】D
【解析】
连接PE、PF,根据SSS证△AFP≌△AEP,推出∠FAP=∠EAP,求出∠FAP=∠EAP=∠C=25°,根据三角形内角和定理求出即可.
解:连接PF、PE,
由作法可知:AF=AE,PF=PE,
∵在△AFP和△AEP中
∴△AFP≌△AEP(SSS),
∴∠FAP=∠EAP,
∵AB∥CD,
∴∠BAM=∠CMA=25°,
∴∠CAP=25°,
∴∠C=180°﹣∠CMA﹣∠CAP=130°,
故选:D.
练习册系列答案
相关题目