题目内容
【题目】感知:如图①,在平行四边形中,对角线、交于点.过点的直线分别交边、于点、.易证:(不需要证明).
探究:若图①中的直线分别交边、的延长线于点、,其它条件不变,如图②.
求证:.
应用:在图②中,连结.若,,,,则的长是__________,四边形的面积是__________.
【答案】探究:证明见解析;应用:10,36
【解析】
探究:根据平行四边形的性质得到AB∥CD,OB=OD,根据AAS可证明△BOE≌△DOF.
应用:根据平行四边形的性质、梯形的面积公式计算即可.
探究:如图②.
∵四边形ABCD是平行四边形,∴AD∥BC,OD=OB,∴∠ODF=∠OBE,∠E=∠F.
在△BOE和△DOF中,∵,∴△BOE≌△DOF(AAS).
应用:
∵∠ADB=90°,AB=10,AD=6,∴BD8.
∵BE=BC,BC=AD=6,∴BE=3.
∵AD∥BE,∴BD⊥CE.在Rt△OBE中,OBBD=4,BE=3,∴OE=5,由探究得:△BOE≌△DOF,∴OE=OF=5,∴EF=10,四边形AEBD的面积36.
故答案为:10,36.
练习册系列答案
相关题目