题目内容
【题目】如图,将一个直角三角板中30°的锐角顶点与另一个直角三角板的直角顶点叠放一起.(注:∠ACB与∠DEC是直角,∠A=45°,∠DEC=30°).
(1)如图①,若点C、B、D在一条直线上,求∠ACE的度数;
(2)如图②,将直角三角板CDE绕点c逆时针方向转动到某个位置,若恰好平分∠DCE,求∠BCD的度数;
(3)如图③若∠DEC始终在∠ACB的内部,分别作射线CM平分∠BCD,射线CN平分∠ACE.如果三角板DCE在∠ACB内绕点C任意转动,∠MCN的度数是否发生变化?如果不变,求出它的度数,如果变化,说明理由。
【答案】(1)60°;(2)75°;(3)不变,60°
【解析】
(1)利用∠ACE=∠BCA-∠DCE进行计算;
(2)先由CA恰好平分∠DCE得到∠DCA=∠DCE=15°,然后根据∠BCD=∠BCA-∠DCA进行计算;
(3)先根据CM平分∠BCD,CN平分∠ACE得到∠ECN=∠ACE,∠DCM=∠BCD,则∠ECN+∠DCM=(∠BCA-∠DCE),所以∠MCN=∠ECN+∠DCM+∠DCE=(∠BCA+∠DCE),然后把∠BCA=90°,∠DCE=30°代入计算即可.
解:(1)∵∠BCA=90°,∠DCE=30°,
∴∠ACE=∠BCA-∠DCE=60°;
(2)∵CA恰好平分∠DCE,
∴∠DCA=∠DCE=×30°=15°,
∴∠BCD=∠BCA-∠DCA=90°-15°=75°;
(3)∠MCN的度数不发生变化,∠MCN=60°.理由如下:
∵CM平分∠BCD,CN平分∠ACE,
∴∠ECN=∠ACE,∠DCM=∠BCD,
∴∠ECN+∠DCM=(∠ACE+∠BCD)=(∠BCA-∠DCE),
∴∠MCN=∠ECN+∠DCM+∠DCE
=(∠BCA+∠DCE)=×(90°+30°)=60°.