题目内容
【题目】"引葭赴岸“是《九章算木》中的- -道題:”今有池一丈 ,葭生其中央,出水一尺,引葭赴岸,迺与岸芥.伺水深,葭氏各几何?"題意是:有一个边长为10尺的正方形池塘,一棵芦苇AB生长在它的中央,高出水面BC为1尺.如果把该芦苓沿与水池边垂直的方向拉向岸辺,那么芦革的顶部B恰好碰到岸边的B'. 向芦苇长多少? (画出几何图形并解答)
【答案】13尺
【解析】
我们可以将其转化为数学几何图形,可知边长为10尺的正方形,则B'C=5尺,设出AB=AB'=x尺,表示出水深AC,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长和水深.
设芦苇长AB=AB′=x尺,则水深AC=(x1)尺,
因为边长为10尺的正方形,所以B'C=5尺
在Rt△AB'C中,52+(x1)2=x2,
解之得x=13,
即水深12尺,芦苇长13尺.
故芦苇长13尺.
练习册系列答案
相关题目
【题目】若二次函数的图象与轴交于A、B两点(A点在B点左侧),顶点为,
(1)求A、B、三点坐标。
(2)在平面直角坐标系中,用列表描点法,作出抛物线图象(如图),并根据图象回答,为何值时,函数值大于0?
(3)将此抛物线向下平移2个单位,请写出平移后的解析式。