题目内容
【题目】如图(如图1所示)在△ABC中,∠ACB=90°,∠A=30°,BC=4,沿斜边AB的中线CD把这个三角形剪成△AC1D1和△BC2D2两个三角形(如图2所示).将△AC1D1沿直线D2B方向平移(点A,D1,D2,B始终在同一直线上),当点D1于点B重合时,平移停止.设平移距离D1D2为x,△AC1D1和△BC2D2的重叠部分面积为y,在y与x的函数图象大致是( )
A. B. C. D.
【答案】C
【解析】如图3,当0≤x≤4时,
∵D2D1=x
∴D1E=BD1=D2F=AD2=4﹣x,
∴C2F=C1E=x.
∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,
∴∠B=60°,
过C作CH⊥AB于H,
∴CH=2,
∵在△ABC中,sin∠CDB=,
∴sin∠ED1B==.
设△BED1的BD1边上的高为h,
∴h=,
∴S△BD1E=×BD1×h=(4﹣x)2.
∵∠C1+∠C2=90°,
∴∠FPC2=90°.
∵∠C2=∠B,
∴sin∠B=,cos∠B=,
∴PC2=x,PF=x,
∴S△FC2P=PC2PF=x2
∴y=S△D2C2B﹣S△BD1E﹣S△FC2P=(4﹣x)﹣(4﹣x)2﹣x2=﹣x2+x
∴y=﹣x2+x.
∴y与x的函数图象大致是C选项,
故选:C.
练习册系列答案
相关题目