题目内容
【题目】如图,利用热气球探测器测量大楼AB的高度.从热气球P处测得大楼顶部B的俯角为37°,大楼底部A的俯角为60°,此时热气球P离地面的高度为120m.试求大楼AB的高度(精确到0.1m).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)
【答案】大楼AB的高度约为68.1米.
【解析】
试题分析:首先过P作PC⊥AB,垂足为C,进而求出PC的长,利用tan37°=,得BC的长,即可得出答案.
试题解析:过P作PC⊥AB,垂足为C,由已知∠APC=60°,∠BPC=37°,
且由题意可知:AC=120米.
在Rt△APC中,由tan∠APC=,
即tan60°=,得PC=3=40.
在Rt△BPC中,由tan∠BPC=,
即tan37°=,得BC=40×0.75≈51.9.
因此AB=AC-BC=120-51.9=68.1,
即大楼AB的高度约为68.1米.
【题目】老张装修完新房,元旦期间到商场购买冰箱、电视机和洗衣机三件家电,刚好该商场推出新年优惠活动,具体优惠情况如下表:
购物金额(原价) | 折扣优惠 |
不超过3000元的部分 | 无折扣优惠 |
超过3000元但不超过10000元部分 | 九五折() |
超过10000元的部分 | 九折 |
付款时,还可以享受单笔消费满2000元立减160元优惠 |
如:买原价5000元的商品,实际花费:
(元)
(1)已知老张购买的这三件家电原价合计为11500元,如果一次性支付,请求出他的实际花费;
(2)如果在该商场购买一件原价为元的商品().请用含的代数式表示实际花费;
(3)付款前,老张突然想到:如果一次性支付,虽然折扣优惠更大,却只能享受一次立减160元优惠,如果将这三件家电分开支付或者两件合并支付.另一件单独支付,就可以享受多次立减160元优惠,已知老张购买的冰箱原价4800元,电视机原价4600元,洗衣机原价2100元,请你通过计算帮老张设计出最优惠的支付方案.