题目内容
【题目】如图,在平面内,两条直线L1,L2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线L1,L2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有_____个
【答案】4
【解析】
到l1的距离是2的点,在与l1平行且与l1的距离是2的两条直线上;同理,点M在与l2的距离是1的点,在与l2平行,且到l2的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.
到l1的距离是2的点,在与l1平行且与l1的距离是2的两条直线上;
到l2的距离是1的点,在与l2平行且与l2的距离是1的两条直线上;
以上四条直线有四个交点,故“距离坐标”是(2,1)的点共有4个。
故答案为:4.
练习册系列答案
相关题目