题目内容
【题目】如图所示,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四边形DEOF中,错误的有( )
A.1个B.2个C.3个D.4个
【答案】A
【解析】
根据四边形ABCD是正方形及CE=DF,可证出△ADE≌△BAF,则得到:①AE=BF,以及△ADE和△BAF的面积相等,得到;④S△AOB=S四边形DEOF;可以证出∠ABO+∠BAO=90°,则②AE⊥BF一定成立.错误的结论是:③AO=OE.
解:∵四边形ABCD是正方形,
∴CD=AD
∵CE=DF
∴DE=AF
∴△ADE≌△BAF
∴AE=BF(故①正确),S△ADE=S△BAF,∠DEA=∠AFB,∠EAD=∠FBA
∵S△AOB=S△BAF-S△AOF,
S四边形DEOF=S△ADE-S△AOF,
∴S△AOB=S四边形DEOF(故④正确),
∵∠ABF+∠AFB=∠DAE+∠DEA=90°
∴∠AFB+∠EAF=90°
∴AE⊥BF一定成立(故②正确).
假设AO=OE,
∵AE⊥BF(已证),
∴AB=BE(线段垂直平分线上的点到线段两端点的距离相等),
∵在Rt△BCE中,BE>BC,
∴AB>BC,这与正方形的边长AB=BC相矛盾,
∴,假设不成立,AO≠OE(故③错误);
故错误的只有一个.
故选:A.
练习册系列答案
相关题目