题目内容

【题目】如图,数轴上点表示的数为6,点位于点的左侧,,动点从点出发,以每秒3个单位长度的速度沿数轴向左运动,动点从点出发,以每秒2个单位长度的速度沿数轴向右运动.

1)点表示的数是多少?

2)若点同时出发,求:

当点相遇时,它们运动了多少秒?相遇点对应的数是多少?

个单位长度时,它们运动了多少秒?

【答案】1)点表示的数为 2)①点与点相遇,它们运动了2秒,相遇时对应的有理数是0.②当点运动秒或秒时,个单位长度.

【解析】

1)由点B表示的数=A表示的数-线段AB的长,可求出点B表示的数;

2)设运动的时间为t秒,则此时点P表示的数为6-3t,点Q表示的数为2t-4

①由点PQ重合,可得出关于t的一元一次方程,解之即可得出结论;

②分点PQ相遇前及相遇后两种情况,由PQ=8,可得出关于t的一元一次方程,解之即可得出结论.

解:(1表示的数为6,且点在点的左侧,

表示的数为

2)设运动的时间为秒,

则此时点表示的数为,点表示的数为

①依题意,得:

解得:

答:点与点相遇,它们运动了2秒,相遇时对应的有理数是0

②点相遇前,

解得:

相遇后,

解得:

答:当点运动秒或秒时,个单位长度.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网