题目内容
【题目】若二次函数y=(x+1)(x﹣m)的图象的对称轴在y轴的右侧,则实数m的取值范围是( )
A.m<﹣1
B.﹣1<m<0
C.0<m<1
D.m>1
【答案】D
【解析】解:∵令y=0,即(x+1)(x﹣m)=0,则x=﹣1或x=m, ∴二次函数y=(x+1)(x﹣m)的图象与x轴的交点为(﹣1,0)、(m,0),
∴二次函数的对称轴x= ,
∵函数图象的对称轴在y轴的右侧,
∴ >0,
解得m>1.
故选D.
【考点精析】解答此题的关键在于理解抛物线与坐标轴的交点的相关知识,掌握一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.
练习册系列答案
相关题目
【题目】用水平线和竖起线将平面分成若干个边长为1的小正方形格子,小正方形的顶点称为格点,以格点为顶点的多边形称为格点多边形.设格点多边形的面积为S,该多边形各边上的格点个数和为a,内部的格点个数为b,则S= a+b﹣1(史称“皮克公式”).
小明认真研究了“皮克公式”,并受此启发对正三角形网格中的类似问题进行探究:正三角形网格中每个小正三角形面积为1,小正三角形的顶点为格点,以格点为顶点的多边形称为格点多边形,下图是该正三角形格点中的两个多边形:
根据图中提供的信息填表:
格点多边形各边上的格点的个数 | 格点多边形内部的格点个数 | 格点多边形的面积 | |
多边形1 | 8 | 1 | |
多边形2 | 7 | 3 | |
… | … | … | … |
一般格点多边形 | a | b | S |
则S与a、b之间的关系为S=(用含a、b的代数式表示).