题目内容
分析:如图,连接BD.由勾股定理求得BD的长度;然后根据勾股定理的逆定理判定△BDC是直角三角形,则四边形ABCD的面积=直角△ABD的面积+直角△BDC的面积.
解答:
解:∵在△ABD中,AB⊥AD,AB=3,AD=4,
∴BD=
=
=5.
在△BDC中,CD=12,BC=13,BD=5.
∵122+52=132,即CD2+BD2=BC2,
∴△BDC是直角三角形,且∠BDC=90°,
∴S四边形ABCD=S△ABD+S△BDC=
AB•AD+
BD•CD=
×3×4+
×5×12=36,即四边形ABCD的面积是36.
∴BD=
| AB2+AD2 |
| 32+42 |
在△BDC中,CD=12,BC=13,BD=5.
∵122+52=132,即CD2+BD2=BC2,
∴△BDC是直角三角形,且∠BDC=90°,
∴S四边形ABCD=S△ABD+S△BDC=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
点评:本题考查了勾股定理、勾股定理的逆定理.注意:勾股定理应用的前提条件是在直角三角形中.
练习册系列答案
相关题目