题目内容
【题目】已知抛物线y=ax2+bx+2经过点A(﹣1,﹣1)和点B(3,﹣1).
(1)求这条抛物线所对应的二次函数的表达式.
(2)写出抛物线的开口方向、对称轴、顶点坐标和二次函数的最值.
【答案】(1)y=﹣x2+2x+2;(2)抛物线开口向下,对称轴是:x=1,顶点坐标为(1,3),二次函数的最大值为3.
【解析】
(1)由条件可知点A和点B的坐标,代入解析式可得到关于a和b的二元一次方程组,解得a和b,可写出二次函数解析式;(2)根据a的值可确定开口方向,并将抛物线的解析式配方后可得对称轴、顶点坐标和二次函数的最值.
解:(1)将点A(﹣1,﹣1)和点B(3,﹣1)代入y=ax2+bx+2中,
得,
∴a=﹣1,b=2,
∴y=﹣x2+2x+2;
(2)∵y=﹣x2+2x+2=﹣(x2﹣2x+1﹣1)+2=﹣(x﹣1)2+3,
∵a=﹣1,
∴抛物线开口向下,
对称轴是:x=1,顶点坐标为(1,3),二次函数的最大值为3.
练习册系列答案
相关题目