题目内容
观察发现
如题26(a)图,若点A,B在直线同侧,在直线上找一点P,使AP+BP的值最小.
做法如下:作点B关于直线的对称点,连接,与直线的交点就是所求的点P
再如题26(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.
做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这
点就是所求的点P,故BP+PE的最小值为 .
题26(a)图 题26(b)图
(2)实践运用
如题26(c)图,已知⊙O的直径CD为4,AD的度数为60°,点B是的中点,在直径CD上找一点P,使BP+AP的值最小,并求BP+AP的最小值.
题26(c)图 题26(d)图
(3)拓展延伸
如题26(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留
作图痕迹,不必写出作法.
如题26(a)图,若点A,B在直线同侧,在直线上找一点P,使AP+BP的值最小.
做法如下:作点B关于直线的对称点,连接,与直线的交点就是所求的点P
再如题26(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.
做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这
点就是所求的点P,故BP+PE的最小值为 .
题26(a)图 题26(b)图
(2)实践运用
如题26(c)图,已知⊙O的直径CD为4,AD的度数为60°,点B是的中点,在直径CD上找一点P,使BP+AP的值最小,并求BP+AP的最小值.
题26(c)图 题26(d)图
(3)拓展延伸
如题26(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留
作图痕迹,不必写出作法.
略
解:(1);
(2)如图:
作点B关于CD的对称点E,则点E正好在圆周上,连接OA、OB、OE,连接AE交CD与一点P,AP+BP最短,因为AD的度数为60°,点B是的中点,
所以∠AEB=15°,
因为B关于CD的对称点E,
所以∠BOE=60°,
所以△OBE为等边三角形,
所以∠OEB=60°,
所以∠OEA=45°,
又因为OA=OE,
所以△OAE为等腰直角三角形,
所以AE=.
(3)找B关于AC对称点E,连DE延长交AC于P即可,
(2)如图:
作点B关于CD的对称点E,则点E正好在圆周上,连接OA、OB、OE,连接AE交CD与一点P,AP+BP最短,因为AD的度数为60°,点B是的中点,
所以∠AEB=15°,
因为B关于CD的对称点E,
所以∠BOE=60°,
所以△OBE为等边三角形,
所以∠OEB=60°,
所以∠OEA=45°,
又因为OA=OE,
所以△OAE为等腰直角三角形,
所以AE=.
(3)找B关于AC对称点E,连DE延长交AC于P即可,
练习册系列答案
相关题目