题目内容
【题目】已知E,F分别是AB、CD上的动点,P也为一动点.
(1)如图1,若AB∥CD,求证:∠P=∠BEP+∠PFD;
(2)如图2,若∠P=∠PFD-∠BEP,求证:AB∥CD;
(3)如图3,AB∥CD,移动E,F使得∠EPF=90°,作∠PEG=∠BEP,求的值.
【答案】(1)见解析;(2)见解析;(3)2
【解析】
(1)过P作PQ平行于AB,由AB与CD平行,得到PQ与CD平行,利用两直线平行内错角相等得到两对角相等,再由∠EPF=∠1+∠2,等量代换就可得证;
(2)先根据三角形外角的性质得出∠P=∠BGP-∠BEP,再由∠P=∠PGB-∠BEP可知,∠PFD=∠PGB,由此可得出结论;
(3)由(1)中的结论∠EPF=∠BEP+∠PFD,设设∠PFD=x,则∠BEP=90°-x,根据∠PEG=∠BEP=90°-x,利用平角定义表示出∠AEG,即可求出所求比值.
解:(1)过P作PQ∥AB,
∵AB∥CD,
∴PQ∥CD,
∴∠BEP=∠1,∠2=∠PFD,
∵∠EPF=∠1+∠2,
∴∠EPF=∠BEP+∠PFD;
(2)∵∠BGP是△PEG的外角,
∴∠P=∠BGP-∠BEP.
∵∠P=∠PGB-∠BEP,
∴∠PFD=∠PGB,
∴AB∥CD;
(3)由(1)的结论∠EPF=∠BEP+∠PFD=90°,
设∠PFD=x,则∠BEP=90°-x,
∵∠PEG=∠BEP=90°-x,
∴∠AEG=180°-2(90°-x)=2x,则.
【题目】某商店甲、乙两种商品三天销售情况的账目记录如下表:
日期 | 卖出甲商品的数量(个) | 卖出乙商品的数量(个) | 收入(元) |
第一天 | 39 | 21 | 321 |
第二天 | 26 | 14 | 204 |
第三天 | 39 | 25 | 345 |
(1)财务主管在核查时发现:第一天的账目正确,但其他两天的账目有一天有误,请你判断第几天的账目有误,并说明理由;
(2)求甲、乙两种商品的单价.