题目内容
【题目】七个边长为1的正方形按如图所示的方式放置在平面直角坐标系中,直线l经过点A(4,4)和点B,且将这七个正方形的面积分成相等的两部分,则直线l的函数表达式是_______.
【答案】y= x-
【解析】
根据题意过点A作AD⊥x轴于点D,由直线l将七个正方形面积分为相等的两部分确定出三角形ABD面积,进而求出BD的长,得出OB的长即为B横坐标,得到B坐标,最后利用待定系数法求出直线l的函数表达式即可.
解:如图,过点A作AD⊥x轴于点D,
由题意,可知△ABD的面积为,
∴ADBD=,即BD= = ,
∴OB=4- = ,
则点B坐标为,
设直线l的函数表达式为,利用待定系数法代入A、B两坐标,,解得,
故直线l的函数表达式为y= x-.
【题目】重庆市的重大惠民工程﹣﹣公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=x+5,(x单位:年,1≤x≤6且x为整数);后4年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=-x+(x单位:年,7≤x≤10且x为整数).假设每年的公租房全部出租完.另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金z(单位:元/m2)与时间x(单位:年,1≤x≤10且x为整数)满足一次函数关系如下表:
z(元/m2) | 50 | 52 | 54 | 56 | 58 | … |
x(年) | 1 | 2 | 3 | 4 | 5 | … |
(1)求出z与x的函数关系式;
(2)求政府在第几年投入的公租房收取的租金最多,最多为多少百万元;
(3)若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第10年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高a%,这样可解决住房的人数将比第6年减少1.35a%,求a的值.
(参考数据:,,)
【题目】保险公司车保险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下表:
上年度出险次数 | 0 | 1 | 2 | 3 | 4 | ≥5 |
保费 | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
该公司随机调查了该险种的300名续保人在一年内的出险情况,得到如下统计图:
(1)样本中,保费高于基本保费的人数为__________名;
(2)已知该险种的基本保费a为6 000元,估计1名续保人本年度的平均保费.