题目内容
【题目】如图,已知AB∥CD,直线EF分别交AB,CD于点E,F,EP平分∠BEF,FP平分∠DFE.试说明:△PEF是直角三角形.
【答案】△PEF是直角三角形
【解析】试题分析:根据平行线的性质,由AB∥CD得到∠BEF+∠DFE =180°,再根据角平分线定义得∠PEF+∠PFE= (∠BEF+∠DFE),然后计算出∠P=90°,根据直角三角形的定义即可得到△EPF是直角三角形.
试题解析:
证明:因为AB∥CD,
所以∠BEF+∠DFE=180°.
又因为EP平分∠BEF,FP平分∠DFE,
所以∠PEF=∠BEF,∠PFE=∠DFE.
所以∠PEF+∠PFE= (∠BEF+∠DFE)=90°.
又因为∠PEF+∠PFE+∠P=180°,
所以∠P=90°.
所以△PEF是直角三角形.
练习册系列答案
相关题目
【题目】某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:
候选人 | 甲 | 乙 | 丙 | 丁 | |
测试成绩 (百分制) | 面试 | 86 | 92 | 90 | 83 |
笔试 | 90 | 83 | 83 | 92 |
如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们和的权.根据四人各自的平均成绩,公司将录取( )
A. 甲 B. 乙 C. 丙 D. 丁