题目内容
【题目】如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.
(1)试判断BE与FH的数量关系,并说明理由;
(2)求证:∠ACF=90°;
(3)如图2,过A、E、F三点作圆,若EC=4,∠CEF=15°,求AE的长.
【答案】(1)BE=FH(2)证明见解析(3)2π
【解析】
试题分析:(1)由△ABE≌△EHF(SAS)即可得到BE=FH
(2)由(1)可知AB=EH,而BC=AB,FH=EB,从而可知△FHC是等腰直角三角形,∠FCH为45°,而∠ACB也为45°,从而可证明
(3)由已知可知∠EAC=30°,AF是直径,设圆心为O,连接EO,过点E作EN⊥AC于点N,则可得△ECN为等腰直角三角形,从而可得EN的长,进而可得AE的长,得到半径,得到所对圆心角的度数,从而求得弧长.
试题解析:(1)BE=FH.
理由:∵∠AEF=90°,∠ABC=90°,
∴∠HEF+∠AEB=90°,∠BAE+∠AEB=90°,
∴∠HEF=∠BAE,
在△ABE和△EHF中,
,
∴△ABE≌△EHF(AAS)
∴BE=FH.
(2)由(1)得BE=FH,AB=EH,
∵在正方形ABCD中,BC=AB,∴BE=CH,
∴CH=FH,∴∠HCF=45°,
∵四边形ABCD是正方形,∴∠ACB=45°,
∴∠ACF=180°﹣∠HCF﹣∠ACB=90°.
(3)由(2)知∠HCF=45°,∴CF=FH.
∠CFE=∠HCF﹣∠CEF=45°﹣15°=30°.
如图2,过点C作CP⊥EF于点P,
则CP=CF=FH.
∵∠CEP=∠FEH,∠CPE=∠FHE=90°,
∴△CPE∽△FHE.
∴,即,
∴EF=,
∵△AEF为等腰直角三角形,∴AF=8.
连结AF,取AF中点O,连结接OE,
∵∠AEF=90°,∴AF为⊙O的直径,
则OE=OA=4,∠AOE=90°,
∴AE的长为:.
【题目】从2开始的连续偶数相加,它们和的情况如下表:
加数的个数(n) | 和(S) |
1 | 2=1×2 |
2 | 2+4=6=2×3 |
3 | 2+4+6=12=3×4 |
4 | 2+4+6+8=20=4×5 |
5 | 2+4+6+8+10=30=5×6 |
… | … |
(1)根据表中的规律,直接写出2+4+6+8+10+12+14=________
(2)根据表中的规律猜想:S=2+4+6+8+…+2n=___________(用n的代数式表示);
(3)利用上题中的公式计算102+104+106+…+200的值(要求写出计算过程).