题目内容

【题目】若关于x的一元二次方程(x-2)(x-3)=m有实数根x1x2,且x1x2.

(1)求m的取值范围;

(2)如果这个方程的两个实根分别为x1=αx2,且αβ,当m>0时,试比较αβ,2,3的大小,并用“<”连接;

(3)求二次函数y=(xx1)(xx2)+m的图像与x轴的交点坐标.

【答案】(1)m>-;(2)α<2<3<β;(3)(2,0)和(3,0).

【解析】

⑴一元二次方程(x-2)(x-3)=m化为一般形式得:x2-5x+6-m=0,

∵方程有两个不相等的实数根x1、x2,∴△=b2-4ac=(-5)2-4(6-m)=4m+1>0,

解得m>

令m=0,则函数y=(x-1)(x-2)的图象与x轴的交点分别为(1,0),(2,0),故此函数的图象为:

∵m>0,

∴原顶点沿抛物线对称轴向下移动,两个根沿对称轴向两边逐步增大,
∴α<1,β>2.

根据求根公式,因为m>0.∴

⑶因为一元二次方程有实数根,且

所以该一元二次方程可以写成或者

即:

所以可以表示成

即:,所求二次函数的图像与x轴的交点坐标为(2,0)和(3, 0).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网