题目内容
【题目】若正整数a,b,c(a<b<c)满足a2+b2=c2,则称(a,b,c)为一组“勾股数”.
观察下列两类“勾股数”:
第一类(a是奇数):(3,4,5);(5,12,13);(7,24,25);…
第二类(a是偶数):(6,8,10);(8,15,17);(10,24,26);…
(1)请再写出两组勾股数,每类各写一组;
(2)分别就a为奇数、偶数两种情形,用a表示b和c,并选择其中一种情形证明(a,b,c)是“勾股数”.
【答案】(1)第一组(a是奇数):9,40,41(答案不唯一);第二组(a是偶数):12,35,37(答案不唯一);(2)当a为奇数时,,;当a为偶数时,,;证明见解析.
【解析】
(1)根据勾股数的定义即可得到结论;
(2)当a为奇数时,当a为偶数时,根据勾股数的定义即可得到结论.
(1)第一组(a是奇数):9,40,41(答案不唯一);
第二组(a是偶数):12,35,37(答案不唯一);
(2)当a为奇数时,,;
当a为偶数时,,;
证明:当a为奇数时,a2+b2=,
∴(a,b,c)是“勾股数”.
当a为偶数时,a2+b2=
∴(a,b,c)是“勾股数”
练习册系列答案
相关题目
【题目】在水果销售旺季,某水果店购进一优质水果,进价为 20 元/千克,售价不低于 20 元/千克,且不超过 32 元/千克,根据销售情况,发现该水果一天的销售量 y(千克)与该天的售价 x(元/千克)满足如下表所示的一次函数关系.
销售量 y(千克) | … | 34.8 | 32 | 29.6 | 28 | … |
售价 x(元/千克) | … | 22.6 | 24 | 25.2 | 26 | … |
(1)某天这种水果的售价为 23.5 元/千克,求当天该水果的销售量.
(2)如果某天销售这种水果获利 150 元,那么该天水果的售价为多少元?