题目内容
【题目】如图,等边△ABC的边长是2,D,E分别是AB,AC的中点,延长BC至点F,使CF=BC,连接CD,EF
(1)求证:CD=EF;
(2)求EF的长.
【答案】(1)见解析;(2)EF=.
【解析】
(1)直接利用三角形中位线定理得出DE∥BC,DE=BC,进而得出DE=FC,得出四边形CDEF是平行四边形,即可得出CD=EF;
(2)利用平行四边形的判定与性质得出DC=EF,进而利用等边三角形的性质以及勾股定理得出EF的长即可得答案.
(1)∵D、E分别为AB、AC的中点,
∴DE为△ABC的中位线,
∴DE∥BC,DE=BC,
∵使CF=BC,
∴DE=FC,
∴四边形CDEF是平行四边形,
∴CD=EF.
(2)∵四边形DEFC是平行四边形,
∴CD=EF,
∵D为AB的中点,等边△ABC的边长是2,
∴AD=BD=1,CD⊥AB,BC=2,
∴EF=CD==.
练习册系列答案
相关题目