题目内容
如图,等腰△ABC中,AC=BC,⊙O为△ABC的外接圆,D为
上一点,CE⊥AD于E,求证:AE=BD+DE.
BC |
证明:如图,在AE上截取AF=BD,连接CF,CD;
在△ACF和△BCD中
∴△ACF≌△BCD,
∴CF=CD,
∵CE⊥AD于E,
∴EF=DE,
∴AE=AF+EF=BD+DE.
在△ACF和△BCD中
|
∴△ACF≌△BCD,
∴CF=CD,
∵CE⊥AD于E,
∴EF=DE,
∴AE=AF+EF=BD+DE.
练习册系列答案
相关题目