题目内容

【题目】如图,⊙O的半径OD垂直于弦AB,垂足为点C,连接AO并延长交⊙O于点E,连接BE,CE.若AB=8,CD=2,则△BCE的面积为(
A.12
B.15
C.16
D.18

【答案】A
【解析】解:∵⊙O的半径OD垂直于弦AB,垂足为点C,AB=8, ∴AC=BC= AB=4.
设OA=r,则OC=r﹣2,
在Rt△AOC中,
∵AC2+OC2=OA2 , 即42+(r﹣2)2=r2 , 解得r=5,
∴AE=10,
∴BE= = =6,
∴△BCE的面积= BCBE= ×4×6=12.
故选A.
先根据垂径定理求出AC的长,再设OA=r,则OC=r﹣2,在Rt△AOC中利用勾股定理求出r的值,再求出BE的长,利用三角形的面积公式即可得出结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网