题目内容

【题目】已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为E、F,点O为AC的中点.

(1)当点P与点O重合时如图1,求证:OE=OF
(2)直线BP绕点B逆时针方向旋转,当点P在对角线AC上时,且∠OFE=30°时,如图2,猜想线段CF、AE、OE之间有怎样的数量关系?并给予证明.
(3)当点P在对角线CA的延长线上时,且∠OFE=30°时,如图3,猜想线段CF、AE、OE之间有怎样的数量关系?直接写出结论即可.

【答案】
(1)

解:∵AE⊥PB,CF⊥BP,

∴∠AEO=∠CFO=90°,

在△AEO和△CFO中,

∴△AOE≌△COF(AAS),

∴OE=OF


(2)

解:图2中的结论为:CF=OE+AE

选图2中的结论证明如下:

延长EO交CF于点G,

∵AE⊥BP,CF⊥BP,

∴AE∥CF,

∴∠EAO=∠GCO,

在△EOA和△GOC中,

∴△EOA≌△GOC(ASA),

∴EO=GO,AE=CG,

在Rt△EFG中,∵EO=OG,

∴OE=OF=GO,

∵∠OFE=30°,

∴∠OFG=90°﹣30°=60°,

∴△OFG是等边三角形,

∴OF=GF,

∵OE=OF,

∴OE=FG,

∵CF=FG+CG,

∴CF=OE+AE


(3)

解:图3中的结论为:CF=OE﹣AE

选图3的结论证明如下:

延长EO交FC的延长线于点G,

∵AE⊥BP,CF⊥BP,

∴AE∥CF,

∴∠AEO=∠G,

在△AOE和△COG中,

∴△AOE≌△COG(AAS),

∴OE=OG,AE=CG,

在Rt△EFG中,∵OE=OG,

∴OE=OF=OG,

∵∠OFE=30°,

∴∠OFG=90°﹣30°=60°,

∴△OFG是等边三角形,

∴OF=FG,

∵OE=OF,

∴OE=FG,

∵CF=FG﹣CG,

∴CF=OE﹣AE.


【解析】(1)由△AOE≌△COF即可得出结论.(2)图2中的结论为:CF=OE+AE,延长EO交CF于点G,只要证明△EOA≌△GOC,△OFG是等边三角形,即可解决问题.(3)图3中的结论为:CF=OE﹣AE,延长EO交FC的延长线于点G,证明方法类似.
【考点精析】解答此题的关键在于理解等边三角形的性质的相关知识,掌握等边三角形的三个角都相等并且每个角都是60°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网