题目内容

【题目】如图,在RtABC中,∠ACB90°,点DE分别在ABAC上,CEBC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF. EFCD,求证:∠BDC90°.

【答案】证明见解析.

【解析】分析:由旋转的性质得到∠DCF为直角,由EFCD平行,得到∠EFC为直角,利用SAS得到三角形BDC与三角形EFC全等,利用全等三角形对应角相等即可得证.

详解:由旋转的性质得:∠DCF=90°, ∴∠DCE+∠ECF=90°, ∵∠ACB=90°,

∴∠DCE+∠BCD=90°, ∴∠ECF=∠BCD, ∵EF∥DC, ∴∠EFC+∠DCF=180°,

∴∠EFC=90°, 在△BDC和△EFC中, DC=FC, ∠BCD=∠ECF, BC=EC,

∴△BDC≌△EFC(SAS), ∴∠BDC=∠EFC=90°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网