题目内容
【题目】已知:如图,在中,分别是、的中点,分别是对角线上的四等分点,顺次连接.
(1)求证:四边形是平行四边形;
(2)当满足____ 条件时,四边形是菱形;
(3)若,
①探究四边形的形状,并说明理由;
②当时,直接写出四边形的面积.
【答案】(1)见解析;(2) 当满足条件时,四边形是菱形,理由见解析;(3)①四边形是矩形,理由见解析;②
【解析】
(1)连接AC,由平行四边形的性质和已知条件得出E、F分别为OB、OD的中点,证出GF为△AOD的中位线,由三角形中位线定理得出GF∥OA,OA,同理:EH∥OC,,得出EH=GF,EH∥GF,即可得出结论;
(2)连接GH,证出四边形ABHG是平行四边形,再证明GH⊥EF,即可得出四边形GEHF是菱形;
(3)①由(2)得:四边形GEHF是平行四边形,得出GH=AB,证出GH=EF,即可得出四边形GEHF是矩形;
②作AM⊥BD于M,GN⊥BD于N,则AM∥GN,证出GN是△ADM的中位线,得出,证出∠BAM=30°,由直角三角形的性质得出,,得出,求出△EFG的面积=,即可得出结果.
(1)证明:连接,如图所示:
∵四边形是平行四边形,
∴,
∴的中点在上,
∵分别是对角线上的四等分点,
∴分别为、的中点,
∵是的中点,
∴为的中位线,
∴GF∥OA,OA,
同理:EH∥OC,
∴EH=GF,EH∥GF,
∴四边形是平行四边形;
(2)解:当满足条件时,四边形是菱形;理由如下:
连接,如图所示:
则AG=BH,AG∥BH,
∴四边形是平行四边形,
∴AB∥GH,
∵,
∴,
∴,
∴四边形是菱形;
故答案为:;
(3)解:①四边形是矩形;理由如下:
由(2)得:四边形是平行四边形,
∴,
∵,
∴,
∴,
∴四边形是矩形;
②作于,于,如图所示:
则AM∥GN,
∵是的中点,
∴是的中位线,
∴,
∵,
∴,
∴,
∴,
∴,
∵,
∴,
∴的面积,
∴四边形的面积的面积.